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The Boltzmann machine uses the relative entropy as a cost function to fit the Boltzmann distribution
to a fixed given distribution. Instead of the relative entropy, we use the mutual information between in-
put and output units to define an unsupervised analogy to the conventional Boltzmann machine. Our
network of Ising spins is fed by an external field via the input units. The output units should self-
organize to form an “internal” representation of the ‘“environmental” input, thereby compressing the
data and extracting relevant features. The mutual information and its gradient with respect to the
weights principally require nonlocal information, e.g., in the form of multipoint correlation functions.
Hence the exact gradient can hardly be boiled down to a local learning rule. Conversely, by using only
local terms and two-point interactions, the entropy of the output layer cannot be ensured to reach the
maximum possible entropy for a fixed number of output neurons. Some redundancy may remain in the
representation of the data at the output. We account for this limitation from the very beginning by re-
formulating the cost function correspondingly. From this cost function, local Hebb-like learning rules

can be derived. Some experiments with these local learning rules are presented.

PACS number(s): 87.10.+e, 42.79.Ta, 89.70.+c, 05.20.—y

I. INTRODUCTION

The human brain is able to extract important features
from the enormous flow of data supplied by its sensory
systems. Which features are important depends on the
special environment the individual has to survive in.
Therefore it is of obvious advantage for every individual
to be able to adapt its information processing to a chang-
ing environment. The hypothesis may be set up that this
process is based mainly on efficient unsupervised learning
mechanisms. We denote this form of unsupervised learn-
ing as “environment driven self-organization.”

Let us consider an example to illustrate these catch-
words. While we easily recognize words and names in
our own language, a foreign language often sounds
strange to us, and it is difficult to discern words and
remember the names of persons. Fine nuances in pronun-
ciation of words might correspond to different meanings
but are inaudible to a nonskilled person. Typically, it
takes a while to get accustomed to the sound of a foreign
language. This adaptation process might correspond to
the extraction of new relevant features which are useful
to discriminate and recognize words in the foreign
language. This feature extraction may be viewed as an
unsupervised process driven by listening to the sound of
the foreign language, that is, it is driven by the special en-
vironment we are living in. The capability of recognition
of words, names, and faces can be attributed to higher
areas of the cortex. Hence this example suggests that
even at higher levels of information processing unsuper-
vised learning might be relevant.

Information theory provides us with efficient tools to
get better insight into unsupervised learning mechanisms.
In recent work, several authors developed learning rules
on the basis of information theory. Linsker [1] intro-
duced the “infomax” principle, which proposes the mutu-
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al information between input and output units as a cri-
terion for the performance of the network. For linear
neurons without noise and a Gaussian input distribution
this infomax principle is closely related to a principal
component analysis (PCA) [2]. A PCA can be achieved
with Hebbian learning rules in a network of linear neu-
rons with lateral connections of the output neurons.
Different network topologies have been investigated
[3-5]. The lateral weights serve to decorrelate output
neurons with an anti-Hebbian rule [6].

Most of these results are deduced by assuming that the
input distribution is Gaussian. For this special case local
learning rules are shown to be sufficient to maximize an
information theoretic measure even in the noise case [2].
A Gaussian distribution is a maximum entropy distribu-
tion characterized by the variance in the different direc-
tions only. Hence it should not be astonishing that for a
distribution with these characteristics only and linear
neurons the infomax principle results in extracting the
principal components. For general input distributions
this is not the case. An information processing system
should be able to treat more complicated statistical
dependences.

Little is known about unsupervised information pro-
cessing with nonlinear neurons [7-9]. Most commonly
these papers are based on the (somewhat troublesome)
concept of the continuous entropy. There are essential
differences from the concept of the discrete entropy, even
in the limit of an infinite discretization of a continuous
variable. At the heart of these differences we may view
the mathematical model of the real axis consisting of an
uncountable-infinite number of elements. We may attri-
bute different meanings to any of these elements. This
may lead to infinite expressions, even for the mutual in-
formation, if the resolution of the real axis is not ren-
dered finite by the assumption of noise.
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The discrete entropy does not have these problems. In
the discrete case, we have only a finite number of distin-
guishable states. The binary variables of the Ising spins
used here may be considered as €{0,1}, as well as
€ {£1} or any other mathematical useful coding. We
emphasize this to prevent confusion with other work,
e.g., [8], where a continuous sigmoid-shaped neuron is
used with output values €[0,1]. While our network
maps the input onto a binary code word of length N, the
neuron in [8] maps the input onto a real number.

In [10], we find an information-theoretic ansatz with
binary variables. Here many interacting spins form a net-
work similar to a Boltzmann machine with input and out-
put units. However, instead of the relative entropy in the
conventional Boltzmann machine the mutual information
between input and output is used as a cost function [11].

Why is it desirable to have high mutual information?
The answer is the standard interpretation of the entropy
as a measure of uncertainty. High mutual information
means low uncertainty, on average, about the input if we
know the evoked output. The mutual information is
maximal if we have a bijective mapping of the “environ-
mental” input onto an “internal” representation, the out-
put of our network. For the above given example of
recognition of words and names bijectively means we are
able to understand different words and discriminate the
names of different persons. We may say we are well in-
formed about our environment. Hence infomax means
that the output units should self-organize to form an
internal representation of the environment, which op-
timally results in a bijective mapping. For a low-
dimensional output this corresponds to a compression of
the input data. To get there the network is enforced to
extract the main characteristic features of the input and
find statistical dependences that can be used in order to
build up a more efficient representation of the environ-
ment with less redundancy.

The aim of the present work is to investigate possibili-
ties and limitations of local learning rules with respect to
the above-defined task. Thereby we will make no as-
sumptions about the input probability distribution. We
will see that the entropy is a global measure in the sense
that it depends on nonlocal expressions. Hence, when re-
stricted to local learning rules and correspondingly to the
conventional two-point interaction of the Ising spins,
some redundancy may remain in the representation of the
data at the output. We will account for these limitations
from the very beginning by rewriting the cost function
correspondingly. This new cost function neglects nonlo-
cal multipoint correlations, which may lead to a represen-
tation of the data at the output that is not of maximum
efficiency. However, the gradient of this cost function
will lead to a local learning rule. Local learning rules are
very simple, fast to implement, and of biological
relevance. However, we do not intend to explain biologi-
cal information processing; rather we are interested in
contributing to the general question of local learning
rules in a self-organizing network within the framework
of information theory. Nevertheless, we have added one
biologically motivated experiment, the retina model (Sec.
VI), which we think is generally instructive.
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The paper is organized as follows. In Sec. II we define
our notation and review the way to the exact learning
rule corresponding to the gradient of the mutual informa-
tion [11]. In Sec. III we use some very rough approxima-
tions to sketch the main features of the exact learning
rule, the close connection to the Hebbian principle and
the origin of anti-Hebbian decorrelation. Section IV in-
troduces the mean field approximation and shows the
general limitations of local learning rules. A cost func-
tion complying with these limitations is presented. Sec-
tion V is concerned with the evaluation of the gradient in
this cost function. Some experiments with a correspond-
ing local learning rule are performed in Sec. VI. We close
by summarizing our main results and by presenting an
outlook on future work in Sec. VII.

II. THE EXACT LEARNING RULE

The topology of the network we will use in the follow-
ing is shown in Fig. 1. The state of the input units is
denoted by the vector %, the output units by
de{—1, +1}N, which are termed internal units. P? is
the probability distribution of the input vectors. This dis-
tribution is assumed to be fixed and can be interpreted as
the environment acting on our network. During the pre-
sentation of the input pattern 7 the input units are
clamped in the state . Via the matrix of “feedforward”
weights F, the field F¥ acts as an external field on the &
neurons. F is real valued; hence even ¥ may be con-
tinuous: ¥ €RX. One row of Fis denoted by f;. Wis the
symmetric matrix of “recurrent weights” interconnecting
the & neurons.

For a given ¥ the energy function H ?( a) of this Ising
spin system is

HA&)=—& Fy—1d'Wa . (1)

Thus the partition function Z and the conditional prob-
ability P_ 7 for & given a fixed ¥ are

Z7=§exp[ —-H?(o_i)] (2)

FIG. 1.
herein.

Notation and topology of the network described
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and

1 .
Py o= ZCXP[ —H_(a)] . (3)
7
We absorbed the temperature as a scaling factor into the
weights.
The mutual information M [a&;
output  is given by

7] between input ¥ and

P P,
M(@7]= 3Pyt /7 =<1n—;—’7>. )
&' @

The weights of the network now have to be adjusted in
such a way that the information that the internal units &
carry about the input ¥ is maximized. To find a corre-
sponding learning rule, we evaluate the gradient of the
mutual information with respect to the weights F and W.
Using (1)—(3) we find for a weight w;; connecting the two
output neurons a; and q;
d
auw, Py =Py

[(aa)“ —(aa)], (5)

where  )° denotes the average for fixed o over all other
degrees of freedom. For example, for a function g that
depends on two variables B and o we define
(g(B,o))°= 3Ps/s8(B;0). For the weight f;; connect-
ing the input neuron v ; j with the output neuron q;, every-
thing is analogous. Equation (5), after some algebra,
leads to the “exact” learning rule

a N
Afy=mgy M@
=1n ey )y 7).,
3 (6)
Awfj=na;M[07;V]

=77<1n Kaya;)7—(a,a; )’>

III. MAIN FEATURES
OF THE EXACT LEARNING RULE

It is computationally very expensive to implement Eq.
(6) as a learning rule. The probability distribution P,
must be known and P-. /7 must be calculated for all

€{—1,+1}¥ in every learnmg epoch. Some experi-
ments with only a few neurons and a small number of in-
put patterns are done in [11]. Of course, Eq. (6) is nonlo-
cal.

We may approximate the exact learning rule as long as
we are sure that the approximation has a positive projec-
tion onto the exact gradient. To clarify the main features
of (6) we will make some very rough approximations
without asking for their validity. For example, let us ex-
pand the logarithm in (6):

P 7 P,

~l——. @)

In
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For the weight S this results in

— M= (a’}’j)_<ai><'}’j>, (8)

af ij
which is the Hebb rule apart from mean values. This
shows the close connection between mutual information
and Hebbian learning.

For the recurrent weights w;; the expansion of the log-
arithm in Eq. (6) results in Aw;;=0. Without corrections
of the recurrent weights, the output neurons correspond
to independent neurons. (We could have started with
W =0.) There is no local learning rule without recurrent
weights that does anything useful. All neurons will work
independently of each other and extract the most impor-
tant feature of the input, thereby losing other features. If
two output units a; and a, do the same, the mutual infor-
mation M [a,;a,] between these two neurons is maximal.
Maximizing the mutual information M [a,a,;¥] between
input ¥ and a two-dimensional output (a;a,) automati-
cally includes the minimization of M[a;;a,]. Without
noise a; and a, should represent mutually independent
information. We can see this explicitly by splitting
M [a,a,;7] into four terms:

p P-.PP

Palazz/7> a ¥ ay >
Palaz Pal/?Paz/?P?PalpaZ

M[alaz;m:(ln

(i) + ()~ )
={In n —\{in
P, P P, P P, P,

M[al’aZ/Y]} (9)

The last two terms in curly brackets can be interpreted as
the mutual information between a; and a, that results
from the input ¥ (unconstrained mutual information
Ma;;a,] minus the mutual information M [a;a,/7],
which is not generated by ¥, hence for fixed 7). The last
term M [a;a,/7] disappears in a mean field description
or any deterministic working network without additional
input except ¥ (Sec. IV). Deterministic means that all en-
tropies are zero if ¥ is fixed. The remaining three terms
can be interpreted as above: Both neurons should
transmit maximum but mutually independent informa-
tion. The first two terms can be interpreted as enforcing
cooperation between neurons of successive layers, the
third leads to competition among neurons within one lay-
er.

From —M[a;;a,] an anti-Hebbian learning rule for
the recurrent weights can be derived (details in Sec. V).
Many models [12,5,4,3] assume anti-Hebbian learning
within one layer. The minus sign in front of M [a,;,] in
Eq. (9) can be seen as the reason for this.

We have split the mutual information for two output
neurons into different terms, which have an easy interpre-
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tation. The main features of the learning rule originating
from these terms are Hebbian learning for the feedfor-
ward weights and anti-Hebbian learning for the recurrent
weights. In the following we will discuss in a more de-
tailed way to what extent the strategy sketched here can
be generalized to any number of output neurons. The
aim is to establish local learning rules. Possibilities and
limitations of local learning rules will become evident.

IV. MUTUAL INFORMATION, REDUNDANCY,
AND LIMITATIONS OF LOCAL LEARNING RULES

First we extend Eq. (9) to the case of many output neu-
rons. In the same way, by expanding the fraction in the
logarithm we get

(P, —>P
P H(P—»Pa Pa)

M[a;7]=<1n

sl
= n —{(In )
i P"i P7 I_;[Pai

P
i
+ <ln = )
HP“i %

=3¥M[a;Y]—R[d]+R[d/7]. (10)
The term
_ Py
R[a]—-(ln HPa,.> (11

is often called the redundancy of the probability distribu-
tion P, and R [@ /7] is the redundancy of the Boltzmann
distribution P 7 averaged over Y. The difference
R [d]—R[d/¥] may be interpreted as the redundancy at
the output @ that is generated by the input 7; i.e., the to-
tal redundancy minus that corresponding to thermal
noise.

The minus sign in front of R[&] in Eq. (10) requires a
low statistical dependence of the output neurons for high
mutual information. Redundancy reduction at the out-
put is inherent in maximizing the mutual information be-
tween input and output. Some authors base their theory
mainly on redundancy reduction [9]. However, some-
what different definitions for redundancy are used and
additional constraints for the available information at the
output have to be introduced. In this way an optimiza-
tion principle for linear neurons is stated in [13,14] to de-
scribe properties of the information processing in the
visual pathway.

For a given external input ¥ our network will work
similarly to a mean field Boltzmann machine [15,16]. We
will calculate the mean value {q; )7 of a neuron a; for a
given ¥ as a solution of

7 Y= tanh(hai )7
~tanh({ h“i »”) (mean field approximation)

=tanh(@;-{(@)7+f;-7) . (12)
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The last equality suggests that with the dominant feedfor-
ward part Fy of the fields h =Wd+F¥, the quality of
the mean field (MF) approximation is increasing.

We use the mean field approximation to approximate
the learning rule as well. Within a mean field theory only
the self-consistently calculated mean values of Eq. (12)
are used to describe the system. As in Eq. (12) we treat
any expression {g(&))7 not as an average but as a func-
tion of the mean values g({& )7) and for any multipoint
correlation function we have

(Hai>?:n<a,.>?’, Sc{l,...,N}. (13)

i€ES ieS

With the arguments of the Appendix this is equivalent to
the statistical independence of the output neurons & for a
given input ¥

Pa=I1Pqy s - (14)
13

This is the most general form of the mean field theory
[17] and can be viewed as a maximum entropy assump-
tion within an approximated description of the system by
mean values only. Within this mean field approximation
the redundancy of the Boltzmann distribution R [& /7]
vanishes. The same manipulations which lead to the
different terms of Eq. (10) can be applied to Eq. (6) to
split the learning rule into the contributions of the
different terms discussed here. Therefore the contribu-
tion of R [@ /7] to the learning rule vanishes as well.

R[d/Y] describes the deviation from a mean field
description. It reflects collective thermal fluctuations
around mean values. R[d /7] is zero if there are no
thermal fluctuations or if the spins fluctuate statistically
independently around their mean values. We assume that
our MF approximation is increasingly valid with an in-
creasing number of neurons, increasing external fields,
and low enough temperature. Decreasing temperature
corresponds to increasing weights, which is the general
tendency during learning. The network is getting rid of
its internal thermal noise by increasing weights.

Omitting R [& /Y], we can write for the mutual infor-
mation (4)

M(&7]~ 3 M[a;;7]~Rd]
(mean field approximation)
=2<ln(Pai/?))“(ln(P3)) . (15)

Every single neuron has to transmit high information
about the input; however, simultaneously the global out-
put distribution P should have low redundancy and cor-
responding high entropy. While the first terms
S :M[a;;¥7] concern single output neurons and therefore
require only local information (Sec. V), the other term be-
ing a function of P_ demands nonlocal information. This
is most obvious if we express P by its multipoint correla-
tion functions (@;a;a; - ) also termed as moments
(see the Appendix for the proof):
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P,

a

1+2a (a;)+3a;a;{a;a;)

(ij)

+3a;

(ijk)

=2~ N 2

sci12,...

ajak(atajak>+ tee ]

Il <Ha,-> . (16)

,N}i€S iES

i and 3 ;) respectively denote the sum over all possi-
ble pairs and triplets, respectively, of pairwise different
indices or generally 3 sy, .~} is the sum over all pos-
sible subsets S C {1,2,...,N}. The entropy ( —In(P_))
reaches its maximum if all correlation functions vanish.
To maximize ( —In(P_)) we need information about all
multipoint correlations. But correlation functions with
more than two neurons have to be interpreted as nonlocal
quantities.

In general it will not be possible to determine all mul-
tipoint correlations independently in a network of N spins
with the topology of Fig. 1. By using a bias we can con-
trol mean values. The N(N —1)/2 recurrent weights W
can be used to determine the N(N —1)/2 two-point
correlations. In order to additionally control higher mul-
tipoint correlations independently we would have to in-
troduce corresponding multipoint interactions. With the
two-point interaction of the energy function (1) only and
the topology of Fig. 1, whether appropriate weights exist
in a way such that the output approximately reaches the
maximum entropy of N In(2) depends on the input distri-
bution P_. Hence, after learning even with the exact
learning rule (6) the amount of information extracted
from the input distribution is not determined a priori. In
general some redundancy will remain at the output layer.

For some tasks vanishing redundancy is even not desir-
able, e.g., we could be interested in storing the states of
the output layer in an associative network. Gardner’s
theory of connections (see, e.g., [18]) provides the limits
for the number of storable states dependent on the num-
ber of units N used. A lot of redundancy among the set
of states to be stored is necessary for the memory to
work. Furthermore, a redundancy free representation is
not robust against damage of single neurons.

Altogether, instead of trying to reach vanishing
higher-order correlations corresponding to vanishing
redundancy by nonlocal learning rules, which is not pos-
sible in general with two-point interactions only, we think
it advisable to restrict our study to local learning rules
and remove the first two moments only. This might
cause some additional redundancy and we have to raise
the number of output neurons correspondingly to reach
some desired entropy {—In(P_)) at the output. It
should be possible to prove that a probability distribution
(16) on {—1,+ 1} with vanishing mean values (a; ) and
vanishing two-point correlations {a;a; ! ) has a minimum
entropy depending on N that can be raised to any arbi-
trary amount by raising N. Additionally, we will see that
it is possible to remove all mean values and two-point
correlations with the aid of a bias and the recurrent
weights.
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For two spins a; and «; statistical independence
=P, P, is equxvalent to vanishing covariance

(acjt y—< a; )(a >=0 (see the Appendix). Hence, re-
movmg the covarlance for all pairs (ij) results in pair-
wise, statistically independent neurons. The correspond-
ing cost function is the sum over the mutual information
between all pairs of neurons 3;)M [a;;c;]. Pairwise sta-
tistical independence is a less strong requlrement not
equivalent to the total independence of all neurons
(Po=T1I:P, ) with R [a&] the corresponding cost func-

tion. Usmg only local information to remove the covari-
ance (aiaj ) —(aq; )(aj ) is equivalent to replacing R [&]
in (15) by 3 ;)M [a;;;]:
K=3M[a;V]-A3ZM[a;a;] . an
i (if)

For two output neurons this cost function is the mutual
information (9) if we neglect M[a;;a,/¥] within the
mean field approximation. The factor A can be used to
keep the balance between cooperation and competition in
cases where the maximum of the two parts of this cost
function cannot be reached simultaneously. We will see
in Sec. V that a learning rule that is essentially Hebbian
learning for the feedforward weights and anti-Hebbian
learning for the recurrent weights can be deduced as the
gradient in this cost function with minor approximations.

For simplicity we will restrict our study to vanishing
mean values in the following. For example, for a sym-
metric input distribution P(4’)=P(—%) all odd moments
vanish, for everything is symmetric under a change of
sign of all units. In the general case any of the following
expressions can be extended to nonvanishing mean values
with some additional analysis. Numerical experiments
get somewhat more expensive, for mean values have to be
calculated and stored [see, for example, Eq. (8)]. Addi-
tionally, for nonsymmetric P?», a bias =1 should be add-
ed to get rid of the mean values with the anti-Hebbian
learning rule for the weight b;:

Ab;=—n{Ba;)=—n(a;) . (18)

With vanishing mean value every single neuron has a
high entropy, which is enforced by the first sum in (17)
and (15). For any Pﬁ, F, and W there exists a bias b that
makes the mean values and the learning rule (18) will find
this solution.

V. DERIVATION OF A LEARNING RULE
BY THE COST FUNCTION (17)

We will now calculate the corrections resulting from
the cost function (17) for the weights £, and w,, (see Fig.
1) for the eight representative contributions:
Mla;7], i=1,2,3,4; Mlaja,]; M[ayas); Mlasa,];
and M[aa;]. These eight terms contain all possible
cases, e.g., how the weight w,, is affected by the mutual
information M [a3;a,] between the two other neurons a;



52 INFORMATION THEORY AND LOCAL LEARNING RULESIN A . ..

2865

TABLE I. Contributions to the correction of 7, and w;, for vanishing mean values from different representative mutual informa-
tions. Under the results the letters MF indicate that mean field equations have been used.

= d
To Vfl awlz
From
Viha ) , (@,)7(hg )7 1
Mla;y ——=)=0(&Y) ————)=0(@")
[e:i7] (cosh(hg, Y7)? ? (cosh(h, )7)? ?
MF _ MF,
<a2)7<ha2)7 1
M[ayy 0 ———)=0(C)
[az ?’] (COSh(haz )-,)2 o
MF MF
Mas7] 0 0
MF MF
Mlagy7] 0 0
 MF _ MF
Ma;;a,] (17'[1—((al)1)2])arctanh(a,a2)=o(@’) {(1—({a;a,)")?)arctanh{a;a,) =0 (C")
Mlag;a;,] (¥11—({a;)")?*])arctanh{a,a;) =0 (C') <0(G?)
M[a2;a4] 0 50(@2)
MF
Mas;a,] 0 0
MF MF

and a4, which results in a nonlocal contribution. The re-
sults are displayed in Table I.
We do the algebra explicit for the term V M [a; 7]

Analogously to the derivation of Eq. (6) we obtain
|

Vf]M[al;?’]=((lnPa1/7—lnPal Na 77—, 7)7)) . (19)
First we evaluate the InP /7 term using for the probabil-

ity distribution the general expressions (16)

(P, a7 —(a?)N)=(SP, Hn(P, a7 —(a)77))
bl

"2(1+a1(a1)Y)(al‘-(al)y)—ln

=(72
< [l~(<a2)7’)2]—1
(¥

=i

U

(ho )Y
< (cosh(hg, )7)?2

Only in the last equality has the mean field equation (12)
been used. Up to this point the result is exact for a single
neuron @;. The In(P, ) term in (19) can be treated in the

same way. Together we get
_ (hg,)
ViMla; =<_’———_.>
f1 [ 1 7] Y (cosh<hal>y)2
-—(—z———)arctanh(a ) (21)
2 17 -
(cosh{h, )7)

With vanishing mean values (@) =0 the term propor-
tional to arctanh{a, ), which originates from the In(P,, )

term in (19), disappears. The results in Table I are ob-

1+a{a;)”
)

1+(a;)?”
——(al)?>

7[1—({a,)7)?]arctanh{a,)7)

> (mean field approximation) . (20

I
tained for vanishing mean values. The remaining contri-
bution (20) is local and Hebb-like: it is the presynaptic
activity 7 times the postsynaptic field (A, )7’ times a

positive function of the postsynaptic ﬁeld which is
1/(cosh{h, >")2 We interpret this function in the fol-

lowing way.

(i) For small postsynaptic potentials the neuron a, is
not clearly dedicated to one of its two possible states.
Therefore learning is necessary. This learning is Hebbian
learning.

(ii) For large values of the postsynaptic potentlal
(hy, )7' there is a definite assignment of the pattern ¥ to

one of the two classes, therefore learmng is suppressed by
the factor 1/(cosh(h )7’)2 This is similar to the per-
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ceptron learning where only input patterns with small
stability parameter are used to adapt the weights.

Table I shows the other contributions to the correction
of the weight f, that can be calculated in a similar way in
terms of the correlation functions by using the general ex-
pression (16) for any probability distribution. Most of
them are zero if we use the mean field approximation
(q; aj)y—(a )V(a] 7. The two remaining terms pro-
portional to arctanh ({a;a; )) vanish for a symmetric in-
put distribution P(y")=P( —y) In the general case we
may assume that the correlations (a;a;) are small, for
our cost function forces the output neurons to be pairwise
statistically independent. Expressions linear in {(a;a;)*
are said to be of order k in statistical correlations (SCs):
(aq; Qa; Y¥=0(C*). We will keep only the highest order for
the adaptlon of every weight. This is plausible for the fol-
lowing reasons.

(i) We start learning with small weights, which corre-
sponds to a high temperature. Therefore correlations are
small at the beginning of learning. Additionally we could
learn for some first epochs only with the decorrelating
terms.

(ii) At the end of a successful learning, M[a;;c;] will
be small, which means low correlations {(a;a;) of the
output units.

(iii) To ensure low statistical correlations in the course
of learning, we may use a large A in the cost function (17).

The contribution (20) is independent of correlations of
the output neurons and is therefore of the order o (@Y.
Table I shows that all other contributions to the correc-
tion of f, are <o0(@"). For the feedforward weights we
will keep the o (€°) term only.

The contributions for the correction of the recurrent
weight w, can be evaluated with similar techniques mak-
ing extensive use of the relations of the Appendix. For
the contribution from M [a,;a,] the exact result is

—a—M[al;az]:( 1—({aa,)7)?)arctanh({ a,a, )
12

Jw
=(1—({a12,) ") a1a,) +0(C?) .
(22)

The factor ©,,=(1—({a;a,)")?)E[0,1] is a positive
number and depends on a local term only. Omitting this
factor is essentially an enlargement of the parameter A in
(17), but results in the simple anti-Hebbian learning rule
Aw;~— (o, ; ). The factor A is irrelevant if the max-
imum of the two parts of the cost function (17) can be
reached simultaneously. Some of the experiments of Sec.
VI were done with and without the factor ©;;. In any
case we found equivalent results.

The learning rule corresponding to (22) as well as the
pure anti-Hebbian learning Aw;; ~ —(a,a;) without ©;
vanishes only if all correlations vanish: (a Q; ) =0 for all
pairs (ij). This is equivalent to 3;,M [a;;c ] =0 (see the
Appendix). Starting at any point where the SC approxi-
mation is valid, the anti-Hebbian learning with and
without ©,; has a positive projection onto the exact gra-
dient in 3 ;M [c;;a;]. Hence this anti-Hebbian learn-
ing converges to a solution with 3,M[a;;a ;1=0
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without getting stuck in a local minimum where
SupMla;;a;]17#0. Near 3 ;M [a;;a;]1=0 the SC ap-
proximation is almost exact.

By inspecting the results in Table I it becomes clear
that there are two other o(@') contributions to the
correction of the weight w,, that result from M [a;¥]
and M[a,;7]. These terms are local too, but lead to
correlations between a; and a, and compete with the
term (22) resulting from M [a,;a,]. Indeed for A <2 and
high temperature (small weights) (3/3w;,)/(M[a;¥]
+M[ay¥Y]) exceeds —(3/0w;,)M[a;;a,]. This is
due to the fact that for high temperature (high noise) it is
better to transmit the most important feature of the input
twice instead of an additional less important feature. For
the low-temperature case at the end of learning the term
—(0/0w, )M [a;a,] is dominant. Hence, to avoid high
correlations in the course of learning we always used
A>2.

VI. EXPERIMENTS

Summing up our learning rule consists of a Hebbian
term for any weight that is suppressed by the factor
1/(cosh{h,)7)? for large postsynaptic fields (h,)7.
This factor is not a global factor but specific for every 7.
Additionally the weights within one layer are adapted by
the anti-Hebbian term Aw;; ~ —©; (a,-aj ). ©,; is a posi-
tive number independent of ¥ and therefore may be omit-
ted. If necessary we add a bias to keep the mean values
small.

Learning does not converge (only for T =0, which cor-
responds to infinite weights), but becomes infinitely slow
for the factors 1/(cosh{h,)7)? and ©,;. Convergence
could be achieved by using an arbltrarlly small decay
term for the weights. We terminated learning if there
was no considerable progress anymore.

At the end of any experiment we calculated

~{(@)7(@")”) (mean field approximation)

and (&) to control the success of learning. In any case
we found C;; <0.01 for the nondiagonal elements and
C;>0.95 for the diagonal elements of C and
(a;) <0.003, except for the “retina model” (see below),
where we found C;; =0.9 and C;; <0.03.

Additionally, when calculating the mean values of Eq.
(12) we should use a mean field annealing schedule as pro-
posed in [15]. Due to the dominating feedforward part
F7 of the field (h)"=W(&)7"+F7 we found no
influence of an annealing schedule and calculated the
mean fields (&)7 by iterating Eq. (12) in parallel until
some convergence criterion for fixed temperature 7 =1.
Initial values had no influence on the solution of (12) for
in our examples the system is mainly driven by the exter-
nal field ¥. This may not be the general case. In addi-
tion, the parallel iteration of Eq. (12), which corresponds
to integrating

Edt-(a,-)V(t)=—(a,-)77(t)+tanh(w,~-(&')?(t)+fi-'}7') (23)
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with step size At =1, may not converge. But for small
enough step size the system (23) converges always to a
stationary state (d/dt){a;)"(t)=0 for there exists a
Liapunov function that always decreases under the dy-
namics of (23) [19]. For a more general stability analysis
see [20]. A stationary state of (23) is a solution of (12). In
our case this Liapunov function is the “mean field free
energy”’

FyMF =—(a@n)"-Fy—X(a")"- w(a)¥
1+(a;)" 1+{a;)7
+§ ) In )
2 2 ’

and the dynamics (23) is with positive projection along
the gradient of F){*. This expresses the consistency of
the mean field theory: the mean values {(&@)? are calcu-
lated in such a way that the corresponding mean field dis-
tribution JT;1(1+a;{e; )?) minimizes the mean field free
energy F YMF among all distributions of the form
P=TLP,,.

A. One output neuron

For a single neuron the expression (21) is exact. Figure
2 shows the evolution of the weight vector in a two-
dimensional input space for different initial values. As in-
put we chose (1,1) and (—1,—1) with a probability 0.4
and (1,—1) and (—1,1) with a probability 0.1. P? is sym-
metric and the mean value of the output neuron vanishes.
For small weights (large temperature) the neuron “sees”
only a hazy input distribution and heads for the principal
component along the diagonal (1,1). For low temperature
this is not optimal because with the weight vector along
(1,1), the inputs (1,—1) and (—1,1) are not assigned
definitely to one of the two classes. Hence the weight
vector begins to deviate from the diagonal. Figure 3
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FIG. 2. Phase flow of the gradient field of the mutual infor-
mation in the two-dimensional weight space (f,,f,)ER? for a
single output neuron. The input distribution on {+1}? is de-
scribed in the text. The direction of the flow is always oriented
towards increasing weights.
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FIG. 3. Mutual information (bits) for a single output neuron
plotted over the angle to the x axis (deg) and the norm of the
weight f. The input distribution on {+1}? is described in the
text.

shows the mutual information dependent on the norm
and the orientation of the weight vector in the two-
dimensional input plane. While for small weights the
first principal component of the input distribution at 45°
in Fig. 3 is the direction of maximum mutual informa-
tion, this direction corresponds to a local minimum for
large weights. For one linear neuron similar examples
can be constructed where the first principal component is
different from the direction of maximal mutual informa-
tion.

B. Two output neurons

We have drawn samples from a probability distribution
in two dimensions consisting of four equal Gaussians lo-
cated at (1,1), (1,—1), (—1,1), and (—1,—1). Figure 4
shows the samples used and the way a network with two
output neurons classifies them into four classes.
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FIG. 4. Classification of 400 two-dimensional inputs (y,75)
drawn from a probability distribution consisting of four equal
Gaussians. The four different symbols mark the four different
responses of the two binary output units.
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(—loga(Fz))

bits ;
(bits] 1Ob === S m e m e

2 4 6 8 10 12 14
number of output neurons N

FIG. 5. Full line, the reached entropy at the output
{ —log,(P)), dependent on the number of output spins N; hor-
izontal dashed line, the entropy of the input log,(2!°)=10; dot-
ted line with slope 1, maximum possible entropy log,(2V)=N of
N spins.

C. 2!° random patterns

As input we chose 2'° random 30-dimensional patterns
7€[—1,1]% and presented them with equal probability
to a network with N output spins. We used
N=1,2,...,15 and calculated the entropy { —log,(Pz))
at the end of learning, which is nearly the mutual infor-
mation (4), for (logy(P;>)) is vanishing in the limit of
vanishing temperature. Figure 5 shows the result aver-
aged over three trials every time with new random input
pattern. Also shown are the entropy of the input distri-
bution [horizontal line at log,(2!°)=10] and the max-
imum entropy of N spins [the line log,(2¥)=N]. For a
small number of output neurons { —log,(P)) is identi-
cal to this maximum. There are only small combinatori-
cal possibilities to form multipoint correlations that
could generate redundancy at the output. With increas-
ing N the entropy ¢ —log,_(Pa.)) approaches the horizon-
tal line log,(2!°) =10. At N =15 we have reached nearly
maximal mutual information and a nearly bijective map-
ping of every input ¥ onto an internal representation &.

D. A very simple model for the retina

The first step of information processing of visual data
happens in the retina itself. Before the ganglion cells
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send their signals along the optic nerve, a part of the
redundancy of the visual information incident on the rods
and cones is removed by the system of horizontal, bipo-
lar, and amacrine cells. This redundancy is to a large
part caused by the correlation of nearby image pixels
when looking at typical scenes in our environment.
Mainly the horizontal cells serve for lateral interaction
and thereby enhance visual contrast. Every ganglion cell
still gives a local response; hence we can attribute to
every ganglion cell a local receptive field.

We used the following very simple model for the reti-
na. The input is a string of 100 bits where every bit is
correlated with its next neighbor. This is achieved by
drawing 100 random numbers in every learning epoch,
adding every number to its next neighbor, and taking the
sign of the result. Every output neuron (which should
correspond to a ganglion cell in this rough simplification)
is connected to all other output neurons and to ten neigh-
boring input neurons only (rods and cones). These recep-
tive fields of our ganglion cells overlap by five input bits.
The input distribution is symmetric; hence without a bias
the odd moments vanish. Additionally multipoint corre-
lations of order =4 vanish, for in any set of four neurons
the receptive fields of at least two neurons are separated
by more than one correlation length of the input. Hence,
within the special fixed topology of this model and for the
described input distribution our learning rule should re-
sult in the maximum possible mutual information corre-
sponding to vanishing redundancy at the output.

After learning we recorded the result by moving one
“illuminated” pixel along the string of input bits. Figure
6 shows the mean response {a; )? of three representative
output neurons. These ‘“sombrero” response functions
are well known from the physiology of the eye and can be
deduced using information-theoretic arguments (see [13]
and the references therein).

Illuminating only one pixel is not a typical input but
just a way to record the result. The network is trained to
operate optimally on inputs that rather look like “blocks
of equal image pixels.” Figure 7 shows the response
(a;)? of one output neuron on moving 20 neighboring
“illuminated” image pixels along a ‘“dark” background.
The displayed output neuron responds mainly on edges of
blocks of equal inputs. All information is contained in
the location of those edges. Recording only the location
of the edges is one possible way of transforming the input
signal into a representation with less redundancy. It is
interesting to note that indeed the first one to observe
effects corresponding to Fig. 7 was Mach in 1865 [21].
These observations led him to the conclusion that there

FIG. 6. Mean response {a; )7 of three “gan-
glion cells” on moving one illuminated pixel
y;=1 along the input. All other image pixels
are set to 0. The horizontal axis is the position

(ai);v‘os_ ﬂ
) v NJ

v W

of the illuminated pixel in the 100-dimensional
input.

10 =6 30 a0 S0 CS

- 6 7o
input position

AN

Joo



52 INFORMATION THEORY AND LOCAL LEARNING RULESIN A ...

2869

5 o0e
(aa)”

o.2

-o.2
-o.a
-o.e

-o.e

FIG. 7. Mean response {a;)? of one gan-
glion cell on moving 20 on pixels (y;=+a)
along the input. All other image pixels are set
to off (y;=—a). We have scaled the input to
a=0.2 to prevent the output units from sa-
turating too fast at 1.
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must be a lateral interaction within the retina.

We would like to stress again that it is not our inten-
tion to exactly model biology but rather to show that
with our simplified model based on a information-
theoretic background it is possible to produce well known
and plausible results.

VII. SUMMARY AND OUTLOOK

We have considered local learning rules from an
information-theoretic point of view in a recurrent net-
work of Ising spins. The mutual information is a func-
tion of the global probability distributions P, which de-
pends on nonlocal expressions [Eq. (16)]. Therefore non-
local terms (e.g., multipoint correlations) are hardly
avoidable when constructing learning rules that maxim-
ize the mutual information. Additionally, a bias and
two-point interactions are not sufficient to determine all
multipoint correlations independently. The possible
mappings our network can represent are restricted by us-
ing only two-point interactions. Hence, even if we use
nonlocal expressions, which are expensive to calculate,
we cannot be sure to reach vanishing redundancy and the
maximum possible “information density” =( —In(P_))/
N =1n(2) with N spins at the output layer.

The local learning rules proposed here are not aimed at
this maximum. Local learning rules corresponds to a
cost function (17), which is not equivalent to the mutual
information (4). This cost function forces the output neu-
rons to be pairwise statistically independent instead of to-
tally independent output neurons. The consideration of
pairwise statistical dependences corresponds to the use of
pairwise couplings only. The resulting anti-Hebbian
learning rule uses these two-point interactions to deter-
mine corresponding two-point correlations. In contrast
to the exact learning rule, which will not necessarily
reach R [@]=0, the anti-Hebbian learning will always re-
sult in 3;yM [a;;a;]=0. In this way any amount of in-
formation can be extracted from the input if we use
sufficient output neurons. But our simple learning rules
are obtained at the cost of some additional redundancy in
the way the information is coded at the output. Howev-
er, from the viewpoint of biology or if we want to store
the states of the output layer in an associative memory, a
redundancy free coding might not even be desirable.

Within these limitations there are no further restric-
tions; especially no assumptions on the input distribution
are made. The very simple local learning rules together
with the deterministic mean field dynamics result in a
very fast working network that can be used with a large

number of neurons.

Before using this formalism on a large scale, the validi-
ty of the mean field approximation (13) and the corre-
sponding dynamics (23) should be investigated in more
detail. The mean field theory faces two independent
problems. First, the mean field distribution (13) might
not well approximate the Boltzmann distribution.
Second, the dynamics (23) might not find the global
minimum of the mean field free energy (24), but get stuck
in a local minimum. However, our experimental results
are encouraging, which is due to the strong feedforward
part Fy of the fields Wa+F¥ in our network topology.
Some investigations of deterministic mean field methods
have already been done in [22-24].

Another interesting extension of our work might be to
translate the formalism presented here to spins with
states 0 and 1 (instead of x1). The bias is then control-
ling the mean activity and can be used to switch continu-
ously from coding with low activity (Pott spinlike states)
to a distributed coding with equal probability for O and 1.
For low activity the lateral interaction should mainly de-
velop as lateral inhibition. From physiological observa-
tions lateral and temporal inhibition is obvious in sensory
processing to enhance lateral and temporal contrast.
Foldiak intuitively went this way in [12]. 0-1 coding with
low activity could have some advantages over =1 coding
with (@) =0 and is biologically more appealing.

APPENDIX: USEFUL RELATIONS
FOR PROBABILITY DISTRIBUTIONS
ON{—1,+1}¥

The probability distribution P, for one spin a with the
binary values of 1 is determined by its mean value alone

P,=l(1+ala)). (A1)
The generalization of this expression to N spins is
P=2"% ¥ Ha,.<[1a,.> . (A2)
i€es

sc{1,2,...,N}i€S

3scii2,...,n; 18 the sum over all possible subsets
SC{l,2,...,N} including the empty set [see also Eq.
(16)]. To prove this equation it is enough to state that
any probability distribution on {—1,+1}" is unique,
determined by its finite number of 2V different multipoint
correlations { ---a;a; - ), and the correlations pro-
duced by (A2) are the desired ones. In the sum
SaPz - a;a; - the only symmetric term that sur-
vives the summation is { - - - @;a; - - ). Equation (A2)
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can also be proved by induction. To see this we first state
another useful relation.

An n-point correlation function for the spins a, - - - a,,,
given the state of one additional spin 8

(al"'an)ﬁ=zpal...an/ﬂal"'an N
a

can be expressed as

{ay - a,)+B{a; " a,B)
(ay - a,)b=
1+8(B)
<a1 .t a,,)+B<al tee a,,B)
= . (A3)
2P,
Proof. We have
<a1 . an3)=zpﬂ3<al ca, )B
B
=13(1+B(B)Bla; - a, )’
B .
J
Pay=PpPg,=Ps2™" 3 Ha"(H“:‘)B
Sc(1,2,...,N}i€s Vies
—p2 ¥ » L Ha,-<Ha,->
Sc{1,2,...,N} 2PB ies \ies
N1 Ha,»<Ha,->
Sc{L,2,...,NNN+1}i€S ViES
Q.E.D. In the second equality we used Eq. (A3).
The expression (A2) for P can be written
1+a;a;
P3=<H~—2————> . (A4)

( ) denotes the average over the o assuming for @ and
a’ the same probability distribution. If all correlations
are equal to the product of the mean values

<I;Iai>=l;l<ai> ,

we can take the product out of the average in Eq. (A4)

1+a;a;

This last equation expresses statistical independence of
the N spins. Hence statistical independence of the N
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and

(a;  a,)=3Pgla, - a,)?
B
=131+B(B) ) a; - a,)P.
B

From these two equations we get
<a1 . 'anB>+(a1 .. .an>

=(1+(BNL3B+1)a; - a,)?
B

a,)

=(14+(B))a; - a,)F~ 11,
{ay - a,B)—(a; "a,)=(B)—1)a; - a, )P~

The last two equations can be combined to the desired re-
sult.

Now it is easy to prove Eq. (A2) by induction. For
N =1 we have Eq. (A1). The induction step is as follows:
For @€ {—1,+1}" and an additional spin ay_, ;=8 we
have

ies ies

+6T1a (BT1 ) ]

spins is equivalent to the fact that all correlations are
equal to the product of the mean values. The redundancy

Ri@{ngz)

measures the difference of P, and [];P, and it is stan-

dard information theory that R [&]= 0 and that R [@]=0
is equivalent to P= HiPa,.-

We summarize by applying these results to the case of
two spins. It is easy to prove now that we can express
statistical independence of two spins by any of the four
following equivalent relations:

P.=P.P, Mlap]=—(m-—r%b\=
ap = Lol ps [e;B]= nP PB =0,
a

(aB)=(a){B), (a)f=(a).
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FIG. 3. Mutual information (bits) for a single output neuron
plotted over the angle to the x axis (deg) and the norm of the
weight f. The input distribution on {£1}? is described in the
text.



